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The free radical copolymerization of acrylamide with a quaternary ammonium cationic comonomer, 
diethylaminoethyl acrylate (DMAEA), has been investigated in inverse-emulsion. The copolymer com- 
position was determined from residual monomer concentrations using an h.p.l.c, method. Both reactivity 
ratios were observed to change with conversion. Furthermore, the reactivity ratio of the cationic monomer 
was found to be a function of the ionic strength and monomer concentration and, to a limited extent, the 
polymer concentration and the organic-to-aqueous phase ratio. Therefore, the classical binary ultimate 
group copolymerization scheme cannot predict copolymer composition drift throughout the reaction. An 
artificial neural network (ANN) has been built to predict the copolymer composition. ANNs have the ability 
to map nonlinear relationships without a priori process information. The results show that an ANN can 
predict the copolymer composition very well as a function of reaction conditions and conversion. It is 
expected that for any system where the reactivity ratios are conversion dependent that an ANN,  such as the 
one developed herein, will be preferable. © 1997 Elsevier Science Ltd. All rights reserved. 

(Keywords: acrylamide; artificial neural network; copolymer composition; copolymerization; dimethylaminoethyl acrylate; 
reactivity ratios) 

I N T R O D U C T I O N  

Copolymers of acrylamide with quaternary ammonium 
monomers are applied in several aqueous solid-liquid 
separations such as fines retention in paper making, and 
as flocculants and biocides in municipal and industrial 
water treatment 1'2. Cationic copolymers are character- 
ized by their copolymer composition or charge density, 
molecular weight and chain architecture. Of these 
molecular parameters, the copolymer composition is 
perhaps the most important variable influencing the 
efficiency of flocculation. Because there are no analytical 
methods which can estimate the copolymer composition 
in a rapid fashion, either directly or indirectly through 
monomer composit ion,  a mathematical  model is 
needed to estimate the copolymer composition if one 
wishes to control the copolymer composition on-line 
during a polymerization. The classical binary copoly- 
merization model is often used to predict the polymer 
composit ion according to the functionality of  the 
ultimate group on the chain. According to the classical 
kinetic approach, the chemical composi t ion is deter- 
mined by only two kinetic parameters, the monomer 
reactivity ratios 3-8. However, various researchers have 
obtained different reactivity ratios for the same mono- 
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mer pair. This is partly due to the correlation between r 1 
and r 2 and the difficulty in obtaining statistically 
independent estimates. Table 1 lists the reactivity ratios 
of acrylamide with diaUyldimethylammonium chloride 
(DADMAC) from the literature. These data show that 
reactivity ratios change with reaction conditions in a 
nonrandom fashion. For example, Wandrey 11 observed 
that reactivity ratios are dependent on the feed ratio, while 
Baade 9 found that the reactivity ratio of  both monomers 
increased slightly with increasing monomer concentra- 
tion. Reichert determined that the reactivity of  the 
cationic monomers increased with the ionic strength of 
the aqueous phase 12 owing to shielding of  the electro- 
static repulsive forces. Their results are contrary to the 
assumptions of the classical copolymer model. 

Johnson et al. 13 expressed doubts as to constancy of  
the monomer reactivity ratios at high conversions in the 
free radical copolymerization of  styrene and methyl 
methacrylate, where a change in the monomer reactivity 
ratios was observed, particularly with the onset of  the 
gel effect. Johnson's results were reproduced by 
Dionisio and O'Driscol114. In the copolymerization of 
acrylamide with dimethylaminoethyl methacrylate 
sulfate, Gromov 15 found that the monomer and polymer 
compositions were virtually independent of the extent 
of the reaction up to 50-70% conversion of  both 
monomers. However, the reactivity ratios changed 
significantly. For  example, at low conversion 
(X < 15%), rl(acrylamide ) = 0.52 4-0.05 and r 2 = 1.94- 
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Table ! Compar ison of  the reactivit,, ratios determined by various authors  Ik~r the copolymerization of  acrylamide with D A D M A C  

Monomer  
concentration Temperature  

rj r .  (mol l  I) ( C )  / I  Ref. 

6.4 ± 0.4 0.06 ± 0.03 0.5 50 0.3-0.7 '~ 

6.7 0.58 [.5 20 0, l 0.9 IiI 

6.62" (I.074" 3.0 35 0.11 0.89 I I 

714" ) -~-,. ~r ( ._, 4.0 35 0.2-0.72 

7.54 t' ().049 t' 5.75 47 0.2 0.8 1_' 

"These are average values, since r I and r 2 were observed to depend on the feed ratio 
b Determined in inverse-emulsion polymerization 

0.2 while at high conversion (70 ~ 75%), fl = 0.18 and 
r~ = 5.6. 

Experimental deviations from the predictions of the 
ultimate copolymerization kinetic model have prompted 
the development of alternative schemes, all of which use 
more parameters than the binary reactivity ratios. Such 
models are often very complex 16, with as many as eight 
parameters which need to be simultaneously estimated. 
In general, alternative models are impractical, at least 
from a statistical parameter estimation point of view. In 
the present work, the copolymerization of acrylamide 
(AAM) with dimethylaminoethyl acrylamide quatern- 
ized with methyl chloride (DMAEA) has been studied. 
The copolymer composition was estimated from the 
residual monomer concentrations using an h.p.l.c. 
method 17. An artificial neural network (backpropaga- 
tion network) has been built to predict the copolymer 
composition. 

EXPERIMENTAL 

The polymerizations were carried out using an inverse- 
emulsion procedure in a 5-L 316-stainless steel, stirred, 
tank reactor. The polymerizations were performed iso- 
thermally at 30, 35, 40, and 45°C, while the monomer 
concentrations were kept at 50wt% of the aqueous 
phase. The acrylamide-comonomer feed ratio was varied 
between 0.5 and 0.95. The initiator was azocyanovaleric 
acid (ACV, Wake Chemical Co.) and was used as 
received without further purification. The reactant mix- 
ture was agitated at 400 r.p.m, throughout the course of 
the polymerization. 

The acrylamide monomer (AAM) was purchased from 
Cytec (Charlotte, NC), and was used either as received 
or after recrystallization from chloroform (Fisher ACS 
Reagent Grade, 99.9% pure, Norcross, GA). The 
DMAEA quaternary ammonium monomer was 
obtained from CPS Chemicals (West Memphis, AR) as 
an aqueous solution (80%) inhibited with approximately 
600 ppm of hydroquinone monomethylether and was 
purified by repeated extractions and crystallization from 
acetone. For the polymerization in inverse-emulsion, the 
aqueous phase was emulsified in Isopar-M (Exxon. 
supplied by ChemCentral, Nashville, TN), a narrow 
cut of an isoparaffinic mixture. The nonionic stabilizers 
Hypermer B239 (a block copolymeric surfactant), 
Arlacel 83 (sorbitan sesquioleate) and TWEEN 85 
(polyoxyethylene sorbitan trioleate), were gifts from 
ICI Americas (Wilmington, DE), and were used without 
purification. The,phase ratio (w:o vol/vol) was varied 
from 0.8/1 to 1:8/1 with the oil phase containing 
6 8wt% stabilizer. 

Type I reagent grade water with a resistance > 18 M~- 
cm was obtained through a series of deionization and 
organic scavenger cartridges (Continental Water Sys- 
tems Corp.). Nitrogen, with a purity of 99.99%, was 
purchased from Liquid Air, Inc. (Nashville, TN) and was 
used to strip out the residual dissolved oxygen. The 
oxygen purging procedure included 15 min independent 
sparging of the aqueous and organic phase, and a final 
30rain following the water-in-oil emulsification in the 
reactor. Residual dissolved oxygen levels were reduced to 
below 1 ppm, as determined by an Ingold DO probe. 

Twenty-millilitre aliquots were withdrawn from the 
reactor periodically at 2-min intervals at low conversions 
and in 5-10-rain intervals at high conversions in pre- 
sterilized 20 mL glass scintillation vials (Fisher Scientific) 
containing 100 ppm of hydroquinone. The hydroquinone 
was used to terminate the reaction by scavenging residual 
free radicals. These samples were then stored in ice water 
for the remainder of the reaction and then transferred to 
a refrigerator where they were maintained below 10'::C 
until they were analysed, usually the following day. 

An h.p.l.c, method was developed for the determina- 
tion of the copolymer composition by measuring the 
residual concentration of both monomers 17. A small 
amount of sample (0.01-0.02 g) of this aliquot was added 
to 10mL mobile phase (mixture of acetonitrile and 
deionized water) and agitated. Then the polymer and oil 
in the mobile phase containing the aliquot sample was 
separated by high-speed centrifugation for 2 rain. Fol- 
lowing the centrifugation the samples were diluted using 
the mobile phase to provide a residual monomer 

0 1 2 3 4 5 6 7 8 

Figure i An example of an h.p.l.c, ch romatogram for a system AAM,  
D M A E A  consisting of 100ppm of acrylamide and 100ppm of 
D M A E A  over a CIs coated silica gel sorbent. The mobile phase was 
90 vol% acetonitrile, 10 vol% water with 0.05 mol dibutylamine. The 
pH of  mobile phase was adjusted to 7.0 
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Figure 2 
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(a) Diagram of single-node backpropagation network. (b) Sigrnoid mapping function within an artificial neurone 

a Bias 

~ ~ 0 1  Xlo : 

Ok 

Xn Om 
Input Layer Hidden Layer Output Layer 

b FI 

,*r 

Hidden Layer 

Input Layer 
U 

'~ Bias 
E l  C2 Cp Us R T 

Figure 3 (a) The general structure of a three layer backpropagation 
(BP) network, x l . . .  x, are input variables, o l . . .  o,, are outputs. (b) 
The structure of the backpropagation network used for copolymer 
composition prediction. Cl is the AMM concentration (wt%), C2 is the 
DMAEA concentration (wt%), Cp is the copolymer concentration 
(wt%), Cs is the surfactant concentration (wt%), R is the aqueous phase 
weight fraction and T is the reaction temperature (°C). The output, F1 
is the instantaneous copolymer composition 

concentration between 10 and 200 ppm and injected into 
the h.p.l.c.. The injection volume was 200 #L with every 
sample being measured three to five times. Figure 1 
shows an example of an h.p.l.c, chromatogram for the 
AAM/DMAEA system. The h.p.l.c, was calibrated with 
standard solutions of the monomers. For AAM, the 
calibration curve was linear between 1 and 200ppm, 
while for DMAEA, the calibration curve is linear 
between 1 and 500 ppm. The method is further detailed 
in a paper by Hunkeler et al. 17. The monomer concen- 
trations as determined by h.p.l.c., were used to train the 
artificial neural network. 

ARTIFICIAL NEURAL NETWORK FOR 
COPOLYMER COMPOSITION PREDICTION 

Artificial neural networks have evolved from research 
aimed at modelling cell activity in brain tissue. The basic 
processing elements of neural networks are called arti- 
ficial neurones, or simply nodes. The neuron is actually a 
complex computing device which performs summation 
and nonlinear mapping functions. Figure 2a shows the 
diagram of a neuron. Any function, fix), can be used as 
the nonlinear mapping function. A sigmoid function is 
usually used for the node mapping function, as is shown 
in Figure 2b. Neurones normally operate in parallel and 
are configured in a regular architecture. They are often 
organized in layers, and feedback connections both 
within the layer and toward adjacent layers are allowed. 
Figure 3a shows the general structure of a three-layer 
backpropagation (BP) network, which is a feedforward 
network (no feedback connection), consisting of input 
layer, hidden layer and output layer. 

The number of nodes in the input layer is usually equal 
to the number of input variables. Similarly, the node 
number in the output layer equals the number of output 
variables. The number of nodes in the hidden layer is one 
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of the most important considerations when solving 
problems using multilayer feedforward networks. In 
general, the more exemplars, the greater the number of 
hidden units, and the more precise the system. However, 
if the number of nodes in the hidden layer is too large, the 
system will be over-trained and will fit the error in the 
data. The 'bias' in Figure 3a actually is a fixed input, - I, 
which functions as the constant term in polynomial. The 
strength of each connection is expressed by a numerical 
value, a,'ij, called a weight, which can be adjusted. If the 
connection weights on a input variable are large, the 
connection to this variable is strong, and this variable 
will have significant effect on the outputs. 

There are many applications of neural networks fs > 
Neural 'nets' are mathematical models that have the 
ability to "learn" the correlation between input and 
output values. Training the neural net to learn consists of 
presenting it with a set of correlated inputs and outputs. 
called exemplars. The objective for the network is to 

model the relationship between input and output vari- 
ables. The system learns by adjusting the weights (a,, 0) of 
the node connection. The most extensively adopted 
learning algorithm is the backpropagation algorithm 21, 
which is a generalization of the steepest descent method. 
It consists of  minimizing the mean square error (E), 
defined as: 

I" I11 

I l k  l 

by adjusting each connection wi. / where 4 comes from 
the r input-output  pairs of exemplar data (x a, 4 )  
available for training the network and ok is the network 
output corresponding the input vari~tble .v k. The 
individual weight adjustment is as follows: 

OE 
~ 0  . . . . . .  t 1L~il (2) 
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Table 2 The experimental conditions of the 11 copolymerization reactions that were used to generate data for training of the artificial neural network 

Total Monomer 
Phase ratio mixture Surfactant Initiator wt% in 

T (°C) (aq. wt fraction) fl0 weight (g) (wt%) (g) aqueous phase 

30 0.50 0.5 2000 4 0.1 50 

30 0.55 0.5 2000 4 0.1 50 

30 0.60 0.5 2000 4 0.1 50 

35 0.50 0.7 2000 4 0.1 50 

35 0.55 0.7 2000 5 0.1 50 

35 0.60 0.7 2000 5 0.1 50 

40 0.50 0.9 2000 5 0.1 50 

40 0.55 0.9 2000 5 0.1 50 

40 0.60 0.9 2000 5 0.1 50 

45 0.50 0.6 2000 5 0.1 50 

45 I).55 0.8 2000 5 0.1 50 

Table 3 Partiallist ofthe 275 training exemplars 

C1 C2 Cp Cs T R F 1 

25 25 0 4.0 35 0.6 0.467 
19.35 19 11.66 4.0 35 0.55 0.478 
14.75 13.48 21.77 4.0 30 0.5 0.492 
4.1 3.4 42.5 4.5 35 0.6 0.603 
2.91 2.55 44.5 4.5 30 0.55 0.568 

38.48 7.[2 4.4 5.0 45 0.55 0.702 
32.6 5.23 12.17 5.0 45 0.55 0.762 
20.8 2.53 26.67 5.0 45 0.55 0.842 

9.8 1.05 39.15 5.0 45 0.55 0.89 
6.6 0.6 42.74 5.0 45 0.55 0.882 

30.45 9.48 10.12 4.5 35 0.5 0.61 
22.6 6.12 21.3 4.5 35 0.5 0.721 
19.8 4.9 26.2 4.5 35 0.5 0.717 
16.5 3.85 29.65 4.5 35 0.5 0.756 
13.7 3.15 33.15 4.5 35 0.5 0.804 
7.42 1.62 40.96 4.5 35 0.5 0.837 

25.6 7.34 17.06 4.0 35 0.6 0.724 
13.41 3.0 23.59 4.0 35 0.6 0.813 
27.3 12.2 10.52 4.0 45 0.55 0.676 
25.13 i l .02 13.85 4.0 45 0.55 0.665 
22.9 10 17.1 4.0 45 0.55 0.64 
15.6 6.11 28.3 4.0 45 0.55 0.68 
12.08 4.66 33.26 4.0 45 0.55 0.693 
6.48 2.37 41.15 4.0 45 0.55 0.76 
22.8 15.4 11.8 5.0 35 0.6 0.574 
18.9 11.6 19.5 5.0 35 0.6 0.568 
15.24 8.4 26.36 5.0 35 0.6 0.598 
12.54 6.46 31.0 5.0 35 0.6 0.62 
10.47 5.04 34.49 5.0 35 0.6 0.654 

Table 4 Connection weights in the input layer of the copolymer 
composition prediction network 

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 

C 1 -3.661 -1 .359 1.462 -0.6477 -0.1498 -0.2976 
C2 0.7139 -1.6379 -1.2128 -1 .337 0.3891 -2 .106 
C o 0.049 0.046 -0.228 0.153 -0 .082 0.233 
C~ -0 .049 0.0416 0.0028 0.015 -0.0815 0.0423 
R 0.0036 -0 .026 0.019 0.0074 0.0314 -0.0533 
T -0 .229 0.11 0.071 0.072 0.019 0.101 

where r/is the learning constant with a value of between 
0.1 and 1.0, which influences the effectiveness and 
convergence during training process. In general, the 
optimum value of r/ depends on the problem being 
solved, and only small learning constants guarantee a 
true gradient descent. 

In this study, a three-layer backpropagation network 

(BP) was built, in which there are six nodes in the input 
layer, 10 nodes in the hidden layer, and only one node in 
the output layer. Figure 3 shows the structure of this BP 
network, in which w i is the connection weight between 
the output layer and the ith node in the hidden layer, vii 
is the connection weight between ith node in the hidden 
layer and jth node in the input layer, and uij is the 
connection weight between the ith node in the input layer 
and thejth input variable. The AAM concentration (C0, 
DMAEA concentration (C2), copolymer concentration 
(Cp), phase ratio (R) (aqueous phase weight fraction), 
temperature (T), and the surfactant concentration (Cs), 
comprise the input signals. The output is the instanta- 
neous copolymer composition (Fl), from which the 
cumulative copolymer composition (ill) can be easily 
computed. 

RESULTS AND DISCUSSION 

In general, reactivity ratios are estimated from the experi- 
mental data generated from dilute solution copolymer- 
izations 9 11 at low conversions. Baade et al. 9 obtained 
reactivity ratios of the system AAM/DMAEA (rl = 
0.33, r 2 = 0.4) from a solution copolymerization with a 
solid content of 5wt%. Comparing the ultimate 
copolymerization model, fit using the reactivity ratios 
of Baade et al.9, with our experimental results, significant 
differences are found as shown in Figure 4. Indeed, the 
trend in the experimental data is opposite to that of the 
prediction of the classical copolymerization model when 
the conversion is higher than 20%. The differences 
shown in Figure 4 illustrate that the classical copolymer- 
ization model is not suitable for concentrated hetero- 
phase water-in-oil copolymerizations of ionogenic 
monomers. In particular, for industrial inverse-emulsion, 
inverse-suspension, or inverse-microemulsion copoly- 
merizations with high monomer concentrations, the 
classical model, which uses the reactivity ratios as 
constants, will not give accurate predictions of the 
copolymer composition. If a copolymer composition 
control system is designed based on the prediction of the 
classical copolymer model, the lack of an accurate model 
will lead to an undesired composition drift. 

Copolymerization is a very complex chemical reaction. 
There are several parameters influencing the copolymer 
composition, such as monomer concentration, pH, ionic 
strength, solvent type, and whether the reaction is 
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Figure  6 (a) A comparison of the predictibilib of the AN N and the reactivity ratio models against experimental data to which the models were not 
fitted. (b) Residual (experimental model prediction) for the ANN and reactivity ratio models. The same data were used as is shown in Figure 6a 

carried out homogeneously or in a heterophase system. 
As mentioned in the Introduction, the alternative models 
which are based on mechanisms such as the penulti- 
mate group reactivity model, are composed of too many 
non-independent parameters to be of any practical use. 
Artificial neural networks (ANNs) have the ability to 
map nonlinear relationships without prior information 
about process or system models. One can take the 
copolymerization process as a "grey' box, and train a 
neural network using experimental data, which were 
generated from copolymerization experiments under 
conditions similar to those of commercial production. 
In this work, the training data set includes 275 exemplars 
obtained from 11 copolymerizations under different 
reaction conditions shown in Table 2. For each reaction 
at least 15 samples were withdrawn as a function of" 
conversion for monomer concentration determination. 
Table 3 shows a partial list of  the 275 exemplars. During 
the training process, the neurons learn the relationship 
between output variable (F1) and input variables (mono- 
mer concentrations, polymer concentration, surfactant 
concentration and temperature) by adjusting the con- 
nection weights. F~gure 5 shows the learning profile 
during the training process. The error function (E = 
1/2Eel) decreases during the training process, where e. 

is the error between experimental data and the ANN 
prediction of the ith exemplar. After the ANN has been 
trained, it can be used to predict copolymer composi- 
tion at different conditions. From the weights of  the 
well-trained neural network, we can find the importance 
of the various variables to the output (F 1). Table 4 shows 
the connection weights in the input layer. It can be seen 
that all of the weights connecting the phase ratio R and 
surfactant concentration C~ in the input layer of the 
network are very small (less than 0.1). Therefore, phase 
ratio and surfactant concentration do not influence the 
copolymer composition significantly. However, the con- 
nection weights of the monomer concentrations, input 
variables C1 and Q ,  are very large relative to the other 
parameters. This indicates that the monomer feed ratio 
greatly influences the copolymer composition, as would 
be expected. The polymer concentration and reaction 
temperature also have a connection within the networks, 
and these two parameters slightly influence the copoly- 
mer composition. The polymer concentration effect is 
believed to have two contributing factors. A high 
viscosity macro-ion solution will influence the diffusion 
of the cationic functional group, whether on the free 
end of a chain or a macromolecule, in a non-equal 
manner, and thereby change the relative reactivities. 
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Table 5 Reaction conditions and the comparison of the copolymer composition between experimental data and the prediction of the ANN and 
reactivity ratio model a 

F1 
Cl C2 Cp Fi from the 
(wt%) of the (wt%) of the (wt%) of the T Phase ratio FI from ANN reactivity 
aqueous phase aqueous phase aqueous phase (°C) (aq. wt fraction) Experimental prediction ratio model 

22.8 15.4 11.8 35 0.5743 0.574 0.573 0.54 
11.46 5.8 38.54 30 0.5743 0.635 0.656 0.579 
8.745 4.3 36.96 30 0.5743 0.697 0.713 0.583 
32.55 14.21 3 30 0.505 0.704 0.690 0.599 
27.3 12.18 10.52 30 0.505 0.676 0.675 0.596 
25.13 11.02 13.85 37 0.505 0.649 0.669 0.599 
18.4 7.533 24.09 37 0.505 0.674 0.682 0.608 
12.1 4.66 33.3 30 0.505 0.713 0.743 0.616 
26.6 7.68 15.72 30 0.5 0.72 0.73 0.658 
16.1 3.72 30.2 30 0.5 0.786 0.813 0.69 
12.8 2.856 34.334 40 0.5 0.812 0.847 0.695 
34.8 5.77 9.43 40 0.523 0.764 0.756 0.737 
25.4 3.5 21.1 40 0.523 0.821 0.82 0.763 
15.52 1.7 32.8 40 0.523 0.892 0.90 0.794 
1.95 0.0845 48 40 0.523 0.958 0.972 0.894 
25.0 25.0 0 35 0.6 0.489 0.493 0.487 
20.5 20.1 9.375 35 0.6 0.487 0.487 0.49 
18.2 17.65 14.2 35 0.6 0.479 0.484 0.491 
14.75 13.475 21.78 35 0.6 0.491 0.493 0.499 
8.75 7.325 33.925 35 0.6 0.53 0.552 0.511 

a These data are plotted in Figure 6a 

Furthermore, the charge on the end of a macro-ion chain 
may be screened by the charges of neighbouring polymer 
coils. Because the degree of interchain enlargements 
increases with conversion, this will influence the ionic 
atmosphere around the charged ultimate functional 
group. Clearly, the effect of polymer contribution is 
not normally considered nor is it necessary. However, it 
does appear to occur based on the data presented herein 
for the aqueous copolymerization of cationic monomers. 
That is, the polymer concentration dependence is likely 
due to the electrolytic nature of the macromolecule and 
reaction media. Figure 6a shows the comparison of 
copolymer compositions between untrained experimen- 
tal data and the A N N  prediction. The A N N  predictions 
agree with the experimental data very well, while the 
reactivity ratio model has errors as high as 20%. It is 
important to note that the A N N  was not trained with the 
data in Figure 6, and so the prediction of the A N N  is 
therefore not merely curve fitting. Figure 6b plots the 
residues (experimental, model) for the A N N  and the 
reactivity ratio scheme. The advantages of the A N N  are 
clear. Table 5 shows the reaction conditions and the 
copolymer composition comparison shown in Figure 6. 
All the data generated in Table 5 represent additional 
experiments on which the A N N  was not trained. Figure 7 
shows a typical comparison of copolymerization com- 
position drift between experimental data and the A N N  
prediction as a function of the reaction conversion. 

Implementation of the ANN for copolymer composition 
prediction 

As mentioned above, the phase ratio (R) and the sur- 
factant concentration (Cs) do not influence the copoly- 
mer composition and these two inputs were removed 

from the network. Therefore, the A N N  developed herein 
consist of four input variables: Cl, C2, Cp and T. The 
copolymer composition computing procedure developed 
herein consists of three steps: (1) precalculation, (2) 
A N N  calculation and (3) post-calculation. In the first 
step, the input variables are normalized into the range (0, 
10). C1 = AAM weight fraction of the emulsion × 10; 
C2 = D M A E A  weight fraction × 10; Cp = polymer 
weight fraction × 10; T = reaction temperature (°C)/10. 
In the second step, the trained neural network maps the 
input vector x into the copolymer composition F 1 as 
follows 

F 1 = NIx] (3) 

where N denotes a composite nonlinear matrix opera- 
tor x = [C1, C2, Cp, T, -1]  r (where - 1  is the bias). For 
the A N N  for copolymer composition prediction shown 
in Figure 3, the mapping x--+ F 1 as in (3) can be 
represented as 

F, = r{  wr[vr (Ux)]}  (4) 

where the internal mappings are 

r ( t ; x )  = y (5) 

r [ v y ]  = z (6) 

y and z are the output vectors of the input layer and the 
hidden layer. The operator F is a nonlinear diagonal 
operator with diagonal elements being identical sigmoid 
mapping functions defined as in Figure 2b. The values of 
connection weight matrix W, V and V of the copolymer 
composition prediction A N N  are: 

W = [-2.7, 0.396, 0.97, -0.07, -0.963, -0.164, 

1.6, 1.28, - 1.42, -0.83, -0.49] T (7) 
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V = 

1.233 - 1 . 9 7 5  - 0 . 7 8 2  - 1 . 1 2 2  - 0 , 2 0 9  - 1 . 9 7 6  - 0 . 6 1 9 -  

- 0 . 2 3 4  0. 191 0.285 0.222 0.065 0.094 - 0 . 0 5 3  

- 0 . 8 2 4  0.314 0.389 0.448 0. 102 0.444 0. 145 

- 0 . 0 2  - 0 . 2 4 6  - 0 . 0 7 4  - 0 . 0 1 9  0.079 - 0 , 0 3 2  0.002 

0.913 - 0 . 3 0 6  - 0 . 2 8 9  - 0 . 3 1 4  - 0 , 1 3 8  - 0 . 3 1 4  0,154 

0.276 0.03 0.117 0,143 0.124 - 0 . 3 4 5  - 0 . 0 4 6  

- 1 . 3 2 6  0.436 0.971 0.498 0.232 0.441 - 0 . 2 5 6  

- 1 . 1 4 6  0,569 0.578 0.471 0.405 0.199 - 0 . 0 8 5  

1.359 - 0 . 1 3 2  - 0 . 5 8 2  - 0 , 5 3 5  - 0 . 0 6 5  - 0 , 6 9 0  0,053 

0.953 -0 .081  - 0 . 1 2 9  - 0 , 2 1 5  - 0 . 1 3 5  - 0 , 2 0 6  0.068 

(8) 
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Figure 7 (a) Comparison of the predicted cumulative copolymer composition from the ANN and experimental data lbr a copolymerization of AAM 
and DMAEA. The follow ng conditions were used: [AAM] ° = 380 g Ld i [DMAEA]0 120 g L,~ l T = 40'-C, aqueous-to-organic phase ratio - 1 : I 
[surfactant! = 4 wt% and an agitation rate of 400 r.p.m. (b) Residuals of the predicted copolymer composition of the ANN and reactivity rato model 
based on the data in Figure 7a 
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U = 

-3 .661 0.714 0.049 

- 1.359 - 1.638 0.046 

1.462 -1 .213  -0 .228  

-0 .648  -1 .337  0.153 

-0 .15  0.389 -0 .082  

-0 .28  -2 .106  0.233 

The copolymer  composi t ion  F ANN 

-0 .229  0 . 3 6 5  

0.11 0.624 

0.071 0.9 

0.072 0.095 

0.019 0.032 

0.101 0.633 

(9) 
can be computed  

f rom the input vector x using the mapping  equat ion (4) 
with the connect ion weight matrix W, V and U. Dur ing  
the training process, the value o f  F1 ANN was based on 
weight fraction. Therefore,  the A N N  output  is the 
copolymer  composi t ion  based on weight fraction. In  
the third step, the task ofpos tca lcula t ion  is to convert  the 
copolymer  composi t ion  to the F 1 based on mole fraction. 
The formula  is: 

FANN 

Fl = FANN + (1 - F ANN) M--l- (10) 
M2 

where M1 and M2 are the molecular weights o f  A A M  
and D M A E M ,  which are 71 and 196 respectively. 

C O N C L U S I O N S  

For  the copolymerizat ion o f  acrylamide with a quater-  
nized cationic c o m o n o m e r  the reactivity ratios are 
conversion dependent.  The classical binary ultimate 
reactivity copolymerizat ion model  which takes reactivity 
ratios as constants  during the whole copolymerizat ion 
reaction cannot  give precise predictions o f  the copolymer  
composi t ion.  However,  artificial neural networks have 
been shown to have advantages over the classical reac- 
tivity ratio model  for copolymerizat ion o f  A A M  and 
electrolytic monomers .  We expect that  for any system 

when reactivity ratios change with conversion that  an 
A N N  scheme such as the one developed herein will be 
preferable. 
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